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Abstract—A method is presented for solving the two phase boundary-layer equations for the
condensation of a flowing vapour on a horizontal cylinder. The three governing partial differential
equations are transformed into ordinary differential equations, the number of which depends on the
accuracy required in the solution. The numerical solutions give the distribution of the local values of the
Nusselt number on the periphery of the cylinder as a function of the different governing parameters.

NOMENCLATURE
tube radius;
function of Y {equation 61);
coefficient {equation 33);
specific heat ;
function of Y (equations 54, 56);
function of Y (equations 42, 46);
function of Y (equation 64);
function of Y (equation 50);
function of Y (equation 32);
acceleration of gravity;
Galileo number [ = (2aPg/1;
heat-transfer coefficient ;
integer;
constant {equation 78)
integer;
thermal conductivity;
latent heat of condensation ;
integer;
integer;
dimensionless number {equation 26);
dimensionless number (equation 27};
dimensionless number (equation 51};
Nusselt number ( = 2ah/k;);
pressure;
function of Y (equation 79);
phase change number [ = ¢,(T,,— T, VL];
liquid Prandtl number { = cu/k;);
wall heat flux
(+vein —ve y direction);
rate of heat flow per unit tube length
between x = 0 and x;
integer;
density ratio { = p,/p,);
kinematic viscosity ratio (= v,/v,};
Reynolds number (=2a ¥/ /v,};
distance along the tube circumference;

7, temperature;

AT, temperature difference { = T, ~T,};

u, velocity in the direction of
the x axis;

u*,  dimensionless velocity ( = ua/v);

U,, undisturbed vapour velocity;

v, velocity in the direction of the
y axis;

w, constant (equation 57);

W, constant {equation 35);

X, distance along the liquid-vapour
interface;

Vs distance perpendicular to the
liquid—vapour interface;

Y, dimensionless distance perpendicular
to liguid—vapour interface (= y/5).

Greek symbols

o, thermal diffusivity ( = k/pc);

¥, coefficient (equation 83);

é, condensate thickness;

A, dimensionless condensate thickness
(= d/a);

&, dimensionless distance along
liquid—-vapour interface { = x/aj;

o density;

v, kinematic viscosity;

A dynamic viscosity;

W, stream function;

Y*,  dimensionless stream function {= §//v);

0, dimensionless temperature (equation 59);

£, constant (equation 36).

Subscripts
L for liquid ;
o, for vapour;
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0, at ¢ = 0.
IR mean value:
W, at the wall:

sat,  at saturation.

1. INTRODUCTION

IT was Nusselt [1] who first. in 1916, analytically
treated the laminar condensation of quiescent va-
pours on flat vertical surfaces and horizontal
cylinders. From that time, being of direct technical
importance, the problem of vapour condensation on
horizontal cylinders has received a lot of attention;
and many workers modified the simple theory
(Sparrow and Gregg [2], Chen {3], etc). An
important factor related to that problem and greatly
influencing the mechanism of heat transfer is the
velocity of the oncoming vapour. The vapour
experiences shear forces on the liquid film:; moreover
a pressure gradient is gencrated in that film. This
causes thinning of the condensate film on the
forward hall of the cylindrical surface and hence
reduces its thermal resistance. Shekriladze and
Gomelauri [4] analysed this problem. In their unaly-
sis, they ignored in the condensate layer pressure,
inertia and gravity forces. energy convection and
condensate subcooling. By equating shear stress at
liquid-vapour interface to change in momentum flux
of the condensing vapour, they managed to eliminate
the equation of motion in the vapour phase. Denny
and Mills [ 5] made similar approximations, and they
included gravity forces in liguid layer and con-
densate subcooling in their energy balance. Fujii e al.
[6] considered the equation of motion in the vapour
boundary layer. However, they approximated the
velocity profile in that layer by a quadratic formula,
and still ignored in the condensate film inertia and
pressure forces, energy convection and liquid sub-
cooling. Schmal [ 7] treated the same set of equations
in [6] but he eliminated gravity forces, and still
ignored liquid convection and subcooling.

Such approximations may be justified in many
cases, but they cannot be generalized over the whole
range of the governing parameters. Thus, a need
arises for a method for solving the full two phase
boundary-layer equations. The work presented in
this paper is devoted towards this aim. Solutious,
based on this method. for numerical values covering
a wide range of the governing parameters are
presented and discussed.

2. FORMULATION OF THE PROBLEM

2.1. Description of the model

The physical model is shown in orthogonal
curvilinear coordinates in Fig. 1(a). A condensate
film flows around a horizontal cylindrical surface.
The condensate film is surrounded by a vapour
boundary layer. Outside the vapour layer, the flow
is ideal. The undisturbed vapour velocity and the
force of gravity have the same direction. The x-axis is
along the liquid-vapour interface. and the point of

Idea! flow

(a) - ’lilquid =Solid interface
", Liquid - Vopour interface

* Vapour boundory— Layer edge ;

- - x=¢ha

- R -—

(b}

F1G. 1. (a) Model in orthogonal curvilinear co-ordinates;
(b) Equivalent model in cartesian co-ordinates.

origin is the upper intersection between the
liquid—vapour interface and the axis of symmetry.
The equivalent model in cartesian coordinates is
shown in Fig. 1(b).

2.2. Assumptions
The following assumptions have been made:

(1) Physical properties are constant.

(2) Surface tension forces are insignificant.

(3) Thicknesses of liquid and vapour layers are
small compared with tube radius.

(4) Vapour velocity components along and per-
pendicular to the liquid-vapour interface have
insignificant effects on velocity and pressure distri-
butions in the ideal flow region.

(5) Fluid motion in hiquid and vapour layers is
laminar up to the separation point.

(6) Undisturbed vapour velocity is steady and
uniform and has a low Mach number.

(7) Vapour is initiaily pure, dry and saturated.

(8) Temperature variations at liquid-vapour in-
terface between liquid and vapour phases are
insignificant.

(9) Change in momentum flux at liquid-vapour
interface perpendicular to that interface due to
change in fluid velocity by condensation has neglig-
ible effect on pressure distribution in the liquid film.
(10) Steady state is achieved.

(11) Viscous dissipation is ignored.
(12) Wall surface temperature is uniform.

2.3. Boundary-layer equations
In liguid layer. Conservation of mass, momentum
and energy in liquid boundary layer is expressed
respectively by
Cr Uy (1)

cx Oy
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0 0 —
u,gﬂ‘kvﬁuﬁ— PrPegin{X
ox oy P a
1d %u
S N )
prdx dy
o, oT, T,
ula‘kvl—a; = Iay"‘. (3)

In vapour layer. Similarly in the vapour boundary
layer

du, Jv
f+——2=0 4
ox Oy @
Ju, du, 1d a*u,
WSt e - —Frn ()
0x ay p, dx cy
T, = T, = constant. (6)

2.4. Boundary and interfacial conditions
At liquid—solid interface (y = —9).

uy=0 (7)

vy = (&)

=T, ©

At liguid—vapour interface (y = 0).

u = u, (10)

P = p,v, (11)

w2y, O (12)

oy oy
L=1,. (13)

At vapour boundary-layer edge. At the edge of the
vapour boundary layer, the velocity component in
the x direction approaches the velocity in the main
stream asymptotically. The main stream velocity is
obtained from the ideal flow theory. This may be
expressed as: at y = o

. x
uv=2Uwsm(~>.
a

2.5. Energy balance
From an energy balance in the condensate layer

do
ds = —=dx.
TS =4

(14)

(15)
Within the accuracy of the boundary layer assum-

ptions, the approximation dsxdx may be made.
Equation (15) yields

T _d
! 0.}’ yi*zi_d‘x

0
[J_ _{PIL+PICI(7;al—7;)}“1dJ’:] (16}

3. MATHEMATICAL ANALYSIS
3.1. In liquid layer
The continuity equation in the liquid layer is
satisfied by introducing a stream function ¥, related

to the velocity components by

i,

u = 5"3’ (17)
Ié;

o= -0 (18)

The pressure gradient in the liquid layer is obtained
from the theory of ideal flow, or

d 2p, U2 2
°F_ —J’”—wsin(—x). (19)
dx a a
Substituting in equation (2) gives
N 09 O
dy oxdy Ox 08y?
(572)=(C)
=g|———)sin| —
P a
2p,U? 2
+ P Gin (_x)
ap, a
&y, 2
+v,~——ay3. (20)

Equation (20) may be transformed into a dimension-
less form by introducing the following dimensionless
quantities:

=t

Vi

2n

(dimensionless stream function)
X

=X (22)
a

(dimensionless distance in x direction)

y
Y=< 23

5 (23)
(dimensionless distance in y direction).

Now

My v
ay"

amA” o oy”

and

1 dA alp,*]

A=? (24)
a
(dimensionless condensate thickness).

Substituting in equation (20) gives

AU Pyt _d_A(él//i">2

3Y 0¢0Y dp\ oy
oy oyt
o6 3Y?
+ Ny, A*sin (2¢) +

A (25)

= N, A’sin (¢)
Az
ay3
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where
ga*(p;—p,) Ga(R,—1
N, = = — 26
lg vip 8 Ry (20
2 2 ‘2
= e R @7)
vi p) 2R} R,
and
2aU
Re = “7% (Reynolds number) (28)
Ga = «)—m (Galileo number) (29}
V!
£ . .
R, = — {(density ratio} (30)
R,=2 (31)

(kinematic viscosity ratio).

Let the dimensionless stream function ¥ be ex-
pressed by an infinite odd series in ¢ (Blasius series)

[8], or

=Y Faui >0 (32)
n=0

The coeflicient F,, ., is a function of Y only.
Now

F(m) 2n+1
Ty = 5 P
5 xX
‘/" z Cr+1)F,,., ¢
YdA &
Ad¢ "Z an%quan-l
821!]' o« .,
8@@)’ § 1+1)F2n+1¢72
YdA &
= Fn . 2n+ 1
Adgbﬂg() 2n%1¢

Primes denote differentiation with respect to Y, and
F™, | is the mth derivative of F,, , .

Let the dimensionless condensate layer thickness A
be represented by an infinite even series in ¢
(symmetrical about the y axis), or

A=Y by,o™ (33)
n=0
Substituting in equation (25) and replacing sin (¢)
and sin (2¢) by infinite power series in ¢ give an
equation which contains terms each of them is a
multiplication of a number of infinite series. Carrying
out the multiplication and rearranging give

Z { st z [bZn 2j Z (21+1)F2i+1F;j+1—2i

+(2"'2j“1—Zi)F§i~+xF5;+1«2i>]

+W2n+1}¢2"” =0. (34)

W,,.+1 is a constant defined by

Want1 = Niygeonart ()4 N2 (2) (35
and . .
Eaq41 (M) = j;ﬂ {(__()% ;(T%Zr
o]
(36}

Equation (34) is satisfied at all values of ¢, hence the
coefficient of ¢>** ' must be zerc for all values of n.
Thus,

n J
Fini 'f”{ Z [bln—Zj Z ((25+1)F2i+x1:'2’j+1~2i
ji=0 i=0
+<2n~—2j~1~2i)F'z,-+1F;,-+1~2i)J}
+ Wiy =0 (37
Equation (37) represents an infinite set of ordinary
differential equations. The individual equations are

obtained by substituting n=0,1,2,3... etc. Sub-
stituting and rearranging give

for n=0:
F&"+{b0{F1F}'—(F’1)2]}+VK =0 (38)
ey (1) = b3 39)
& (2) = 2b; (40)
forn=1:
+{bo[F(F3—4F\F,
+3F{F3]+ D3} + W, =0 (41)
Dy = by [F, F{ + (F})] (42)
e3 (1) = b5 (3b, ~ % by) 43)
£3(2) = by {6b, — 3 bo) (44)
forn=2:
Fiyos +{bolFy Fipy = Qn4+2)Fy Fy g
+ @+ D)F{Fyii]+Dypay )
Wy =0 (45)
where
-1 i
Dypir = Z [bzn—zj 2 (Ri+D)F 0 Fajion
j=0 ry
+(2n-2j—1—Zi}F’z,-HF’ZjH-Zi}]
=1
+by Y Qi+ 1) F iy Frpyy—
i=1
= Qi+ D Fy0 Faner - 2)- (46)

If the inertia term is ignored in the equation of
motion, the term between brackets in equa-
tion (37) disappears; the set of equations becomes
then

Fisi+Woe =0 (n20) 47)
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3.2. In vapour layer

The momentum equation in the vapour layer may
be treated in a similar manner using the following
substitutions:

u, = aa'l;” (48)

0= -2 @9)
w={}:iﬁﬁm”“ (50)
,ut U RS (51)

v

The corresponding ordinary differential equations
are:

for n = 0:
VA -] +w =0 (52)
forn=1
3 H{bofLfs — 41115
+3f1fs]+ds} +wys =0 (53)
dy = by [/ f] + (1)*] (54)
forn=2:
n+1 +{bol fi fin i1
~(2n+2) fifons1 + Cn+ D) fY fr044]
+d2n+l} +Worer =0 (55)
n-1
d2n+1 = Z |:b2n—2j
j=0
J
X Z ((2i+1)f2i+1le;'+1»2i
i=0
+(2n—2j_1_2i)féi+1ﬁj+1—2i)]
n—1
+bo Y (Qi+1)fors s fone1-2i
i=1
— Qi+ Df i1 omr1-20)
(56)

fan+1 1s a function of Y only and w,, ., is a constant
defined by

Wapp1 = va£2n+1 (2) for n;O (57)
3.3. Energy equation in liquid layer
Substituting in equation (3) gives
oy, 0T, &y, 0T, *T,
0T oY, 0T, =g 2’, (58)
dy &x dx dy oy
Let
T —
6, = T T . 59)
Tw - T;al
Substituting in equation (58) and rearranging give
oyt o6 oy oe 1 8%6
oY 0¢ op Y  ProyY

Let

91 = Z A2n¢2"- (61)
n=0

A,, is a function of Y only. Differentiating, substitut-
ing and rearranging yield the following set of
ordinary differential equations:

forn=0:
Ag+PrbgF Ap) =0 (62)
fornz1:
Ay + Prby(Fy Ay, —2nF 1 Ay, )+ E,;, 1 =0 (63)
where

E,, = Z {Alzn—z,'
1

j=
J
X Y [Qj+1=20)byiFyjs1-2]
i=0

_(zn*zj)Azn—zj

X

e

(b2:F3j41 -2.-)} (64)

"

0

i

If energy transport by convection is ignored, the

terms between brackets disappear. The set of
equations becomes then
Ay, =0 (n20). (65)

3.4. Boundary and interfacial conditions
At liquid-solid interface (Y = —1).

Fopsr1 (=1)=0 (66)
Fone1(=1)=0 (67)
Ay(=1)=1 for (n=0) (68)
and
A, (=1)=0 for (n>0) (69)
At liquid—vapour interface (Y = 0)
J2nr1(0) =R, F3,,,(0) (70)
fns1(0) = RyR, Fapiy (0) (71)
fon+10) = RyRFF5,4, (0) (72)
A,,(00)=0. (73)
AtY =
From equation (14)
(—Z—ﬁ—z)h ) = ReAsing (74)

Substituting for A from equation (33), replacing sin
¢ by an infinite series in ¢ and carrying out the
multiplication give

: (Y

f2'n+1 (OO) = Re Z

j=omb2n—2j' (75)

3.5. Energy balance
Re-arranging equation (16) in a dimensionless
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form and carrying out the involved series multipli-
cation yield the following equation:

A=+ z {(Zj“‘ Dby, s

j=0

Pr
(Ph F21P1(0)+Pr12]+1)} 0 (76)

where
?15 —Tw
Ph= g—x(—f’i——l {phase change number} (77)
fro
Lyr = J Poyer dY (78)
y=-1
and
Pypyy = Z Az-2;F 2501 (19
j=0
P, alunctionof Yand I, is a constant.
forn=0:
Ap(—1
by = — }_r_.w_o_(_.w)ﬁ_. (80)
E Fl (’0) + PI‘I1
for n>0:

*U+Z{b+l“2{m

E.S. GAaDDIS

5. NOTE ON THE PROCEDURE
OF COMPUTATION

A set of 3 ordinary differential equations with the
corresponding boundary and interfacial conditions
and an algebraic equation (emerging from the energy
balance) exists for each value of n. Since each set is
independent of the other sets for higher values of n,
the solution was carried out step by step starting
with n = 0. The two equations of motion for each n
were solved simultaneously independent of the
energy equation. This can be done provided that the
coefficient b,, is known. Since b,, is the outcome of
the solution, its value was initially assumed and
checked at a later stage. A numerical solution based
on the assumed value of h,, yielded the functions
Faniys Jans 1 and their higher derivatives at different
mesh points. These values were fed in the energy
equation and a solution of the latter was obtained.
The energy balance equation provided the check for
the assumed value of b,,, and if it was necessary
another guess was made and the procedure was
repeated.

The local Nusselt number and the condensate
layer thickness at the forward stagnation point are
yielded from the first set of equations corresponding
to n =0, Three sets arc enough for an accurate

Pr
2j41 (0)+P712”, }

ban -

4. HEAT-TRANSFER RELATIONSHIPS

/[T,
w = k,(%) =hT,~T,) 82
Y Jym wa
Substituting and re-arranging give
2ah <
(Nu), = (—M) ==2Y y5,0™" (83)
A kl S n=0
where
Ag(—1)
= (84)
Y2 E‘ App(—=1)- Z bzﬂ’z»-z;
o i=1
for n>0. (85)

Equation (83) gives the local value of the Nusselt
number. The validity of this equation is up to the
point where flow separation takes place.

If flow separation does not occur, equation (83)
may be integrated to give the mean Nusselt number
Nu,,. This yields

Num:i { (Nu),d¢p = -2
T Js=0

i

Z Yin 712", (86}

weo 2H+1

Pr

(81)

F,(0)+Pri,

evaluation of the local Nusselt number up to ¢
= 1.0, and eight sets were considered up to ¢ = 1.8.
Solutions for evaluating the mean Nusselt number
and for predicting the position of flow separation {¢
>2.0) were carried out with eight and twelve sets
respectively.

Since the solution corresponding to each n is an
input to the equations of higher n, a high degree of
accuracy is essential. This was checked by varying
the number of intervals in liquid and vapour layers.
Limited space does not allow more elaboration.

6. NUMERICAL RESULTS
6.1. Quiescent vapour (Re = 0}

The case of a quiescent vapour is treated as a
special case of the general solution by substituting
Re = 0. Numerical results are presented for steam
condensing at pressures 0.1, 1 and 10atm on a tube
of about 20 mm dia with temperature difference (7T,
~T,} of about 1, 5 and 20 C. The values of the
governing dimensionless parameters are given in
Table 1 (Data No. 1-9). The other computed values
in Table 1 are for the condensation of a vapour
metal (Date No. 10-12) and of vapours of viscous
liquids (Data No. 13-15). The computed values of
the local Nusselt number Nuy, and the local
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Table I. Comparison between Nusselt theory and present work with Re = 0

Fluid R, R, Gu Pr Ph Aq Nul Nuy Nul, Nui Data
No.
2x1077 262x107* 765 765 618 613 1

Water 145x 10 3.76x 1073 2.77x 108 37 1072 391x10"* 512 511 414 410

(p = 0.1atm)} 4x107% 553x10°% 363 362 294 290 3
2x 1077 228x107* 877 877 709 704 4

Water 1.60x 10° 1.40x 1077 1.02x10° 1.74 1072 341x107% 586 586 475 471 5

(p = latm) 4x 1072 484x107% 415 415 337 333 6
2x 107 201x107% 995 997 805 800 7
Water 1.73x10° 575x 1077 296x10° 1.0 1072 301x107* 665 666 538 535 8
{p = 10aum) 4x1072 428x107% 469 471 381 378 9
Liquid 2x 1077 108x107% 185 202 154 162 10
metal 34x10° 32x1072 10° 5x1073 1072 195x107* 103 135 874 108 11
(Pr<l) 4x107% 357x107* 564 955 482 767 12
Viscous 10 1 125x107% 173 161 141 129 13
liquids 10 0.1 108 10? 1 685x 1073 315 286 255 229 14
{(Pre 1) 10° 1 383x107% 564 508 456 408 15

+ Based on present work with Re = 0.
1 Based on Nusselt theory.

dimensionless layer thickness A, at the forward
stagnation point and the mean Nusselt number Nu,
are given in Table 1. Comparison is made between
the values based on the present work (Nuy)t and
(Nu,, )t and the corresponding values based on the
Nusselt theory (Nuy)i and (Nu,)i. The tabulated
values in Table 1 based on the Nusselt theory are
evaluated from the expressions

2 Ga Pr**®
(Nug )i =l' TP } (87)
and
GaP 0.25
(N, )t = 0.725 P;h r] (88)

Agreement exists between the Nusselt theory and the
present work with water at the given pressures and
the given values of the phase change number Ph.
However, the Nusselt theory overestimates the local
and mean values of the Nusselt number in the liquid
metal case and underestimates them in the case of a
viscous liquid when Ph = 1.0. The values of Nug and
Nu, based on the Nusselt theory are respectively
69% and 59% higher with Data No. 12 and 9% and
10%, lower with Data No. 14 compared with the
corresponding values based on the present work.
Data No. 12 for a liquid metal and Data No. 14 for a
viscous condensate are analysed further in Table 2.
The assumptions in the Nusselt theory are examined
separately and together. It is seen in Table 2, that for
the liquid metal case the elimination of the con-
vection term, as expected, has no effect on the
Nusselt number. Since in this case Ph < 1.0, ignoring
subcooling in the condensate is also ineffective.
However, ignoring inertial forces in the condensate
layer leads to an increase in the local Nusselt
number Nu, and the mean Nusselt number Nu,, by

Table 2. Effects of ignoring inertia forces, energy convection,
condensate subcooling and shear forces at interface on Nusselt
number (Re = 0)

Liquid metal Viscous liquid

Data No. 12 Data No. 14

Nuy, Nu, Nuy, Nu,
Present work 56.4 48.2 315 255
A 733 59.4 316 256
B 56.2 48.1 299 243
C 55.9 47.8 298 242
D 67.3 59.7 317 257
A+B+C+D 95.5 77.3 278 225
Nusselt theory 95.5 76.7 286 229

Ignored in condensate layer: A, inertia forces; B, energy
convection; C, condensate subcooling in energy balance; D,

shear forces at liquid-vapour interface.

30% and 239%, respectively. Meanwhile, ignoring the
shear forces at the liquid-vapour interface increases
Nu, and Nu, by 19% and 249 respectively. The
velocity distribution at ¢ = 1 for that particular case
is shown in Fig. 2. It is seen in that figure that the
maximum value of the liquid velocity u( = wa/v,)
for the full solution is attained at ¥ = —0.59 (nearer to
the wall rather than to the liquid—-vapour interface).
The liquid—-vapour interface velocity amounts only
to 25% of the maximum value. The velocity
distributions based on ignoring the inertia term in
the condensate [u}],, the shear forces at the
liquid—vapour interface [1], and when meeting all
the assumptions in the Nusselt theory [u}], , are
also shown in Fig. 2.

Ignoring the inertial forces in the condensate layer
and the shear forces at the interface with Data No.
14 (Pr = 100, Ph = 1) have insignificant effect on the
value of the Nusselt number. However, eliminating
convection in the energy equation or ignoring liquid
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FLY Sl M /”“
A=373x070 / Bls
[a],=289xi0® ;
{A), =309 x0% / Ga = 10°
oxi0’f . Re=o
[al, 20 xi0 / Pr = 5x10°
B Ph = X078
R, = 34x10°
" R, = 32x107°
IBRIO” p

U '
10X 10% b= / 3

Exin?

Frc. 2, Velocity distribution in condensate layer.

Ga=10®
Re= O
1O Pr =100
Ph=i
Ry= 10
R, =01
Q8 &
3
.
\S
08 \\
‘ 8\ (Bals
8 \
S
&ﬁ-’! \
[eX:3
| A
N
N\
(o3 o \\
\
\Y
Y
: i i H
~1.Q ~08 -6 ~C4 -2 G
Y

Fii. 3. Temperature distribution in condensate layer.

subcooling feads to a reduction of 5% in Nu, and
Nu,. The dimensionless temperature distribution in
the condensate layer at ¢ =1 is shown for that
particular case in Fig. 3. The difference between the
temperature distribution §,-, corresponding to the
full solution and the linear distribution [6,.,]p
based on ignoring liquid convection is not very
remarkable. In both cases {Data No. 12 and Data

16 pe
- Go o= 102%10° ——— P 2 X O
C Pro2 174 ——— s } X I072
- Ry = LBXID° ——— = &% 1R
- R, = 1407

Hu }4,

o s o St St o !
10° = o e AR

o o o e =10%
Pressure = latm

Tube diam. > 20mm
Ug 21, 10, 100 ms?
AT=1,5, 2? °c

2 1 i
s 58 v 5
$
¥ 4. Local Nusselt number distribution for water at
1atm.

107
- Ga = 1% e By = 2 X 1073
F o opr o= 5x107 P R
L Ry = 3ax0% wm—— = XIOE
R, =32x107
Re=10°
b s e e e =0°
. r—— e
v

o 1 i
% O ] Ti5
@
Fia. 3. Local Nusselt number distribution for a liquid
metal,

No. 14), when ali the assumptions in the Nusselt
theory were met [case {4+ B+C+D)], agreement
between the computed results based on this analysis
and those caleulated from equations (87) and (88) is
achieved.
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Table 3. Effect of Reynolds number on Nusselt number and boundary layer
thickness (water)

Pressure Re Ag Nu, Nu, Data
No.
14x100  246x 1073 812
14x10°  134x1073 1491 1
14x10*  435x107% 4597
14x 10>  361x1073 555 434
0.1atm 14x10°  194x1073 1032 2
14x10%  629x10°* 3182
14% 107 485x 1073 414 322
14%x10*  233x1073 863 544+ 3
14x 10 747x107% 2688
10° 194x107% 1035
10* 7.83x 107% 2553 4
10° 249x10°% 8037
103 2.90x% 1073 691
1atm 10* 121x 1073 1652 5
10° 385x107% 5194
10? 392x 1073 512 383
10* 1.59x 1073 1264 6
10° 505%x107* 3977
Tx 100 132x10°% 1520
Tx10*  445x107% 4493 7
Tx10°  141x107* 14196
7x10° 208x1073 961
10atm Tx 104 721x10°% 2778 8
Tx10°  228x10"* 8774
Tx10*°  296x107° 678
Tx 104 1.03x107% 1942 9
7x105  327x10"% 6135

+Separation starts near backward stagnation point.

Table 4. Effect of Reynolds number on Nusselt number
and boundary-layer thickness (liquid metal)

Table 5. Effect of Reynolds number on Nusselt number
and boundary-layer thickness (viscous liquids)

Re Aq Nug Nu,, Data No. Re A, Nug Data No.
103 819 x 1073 244 192 103 7.18x1073 298

104 3.15x 1073 634 466 10 104 2.36x 1073 906 13
10° 1.00x 1073 1999 1465 10% 7.46x10"¢ 2865

10° 1.34x 1072 150 122 103 341x1073 628

104 485x% 1073 413 329 11 10* 1.10x 1073 1943 14
10° 1.54x 1073 1303 1038 10° 348 x 107 6144

10° 239 x 1072 84.2 70.5 10° 1.39x 1073 1342

10* 890 x 1073 225 190 12 104 508x107¢ 4200 13
10° 282x1073 711 598 10° 161x107* 13279

6.2. Flowing vapour (Re #0)

Computations were made at different values of the
Reynolds number and the values given in Table 1 for
the parameters Ga, Pr, Ph, R, and R,. The same data
numbers are still used to refer to the values of the
five parameters Ga...Rv when calculations were
made with Re #0. The computed local values of the
Nusselt number Nu, and condensate thickness A,
are given in Tables 3-5. The values of the mean

Nusselt number, as long as flow separation does not
occur, are also present in the tables. The variation of
the local Nusselt number with ¢ at the different
values of Re is shown in Figs. 4-6 for the cases of
water at 1atm, a liquid metal and a viscous liquid
respectively. The general trend in the figures is that
the local Nusselt number distribution is flatter at the
lower values of the Reynolds number and attains
fairly similar profiles with increasing Reynolds
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F1G. 6. Local Nusselt number distribution for a viscous
condensate.

number. In Fig. 7, the ratio [(Nu)g,xo/(Nt)ge=o] I8
plotted against the Reynolds number for condensing
steam at latm. Three distinct regions are clear in
Fig. 7. At low Reynolds number, the condensate
layer 1s gravity controlled. At sufficiently high
Reynolds number, the condensate layer is vapour-
shear controlled. The dependence of the local
Nusselt number Nug at the forward stagnation point
fulfils in that region the following relationship

Nugoc Re®?,

In the intermediate region, where both gravity forces
and vapour-shear forces are influential, a relation
similar to that in the vapour-shear controlled region
does not exist.

E. S. Gaopis

Because the profile of the local Nusselt number
distribution at the forward half of the cylindrical
surface is nearly identical at high Reynolds numbers,
and since most of the condensation takes place at
that half, the ratio [Nu,/Nuy,] may be fairly
constant in the vapour-shear controlied region. The
value of the mean Nusselt number in that region
may still be expressed by the relation

Nu,, oc Re®.

Similar conclusion has been reached in [4, 6, 7).

It is clear from Fig. 7, that the threshold value of
the Reynolds number at which vapour-shear forces
become influential increases with increasing steam
pressure.

Data No. 5 are further examined for a quiescent
and a flowing vapour (Re = 0,10*). While keeping
the other parameters unchanged at their value in the
initial state (i), one of them has been varied and the
ratio [Nuy/(Nug )] is plotted in Fig. 8 against the
ratio of that parameter to its initial value
[ parameter/(parameter), ]. Comparing the two cases
in Fig. 8 shows the difference in the functional
dependence of the Nusselt number on the governing
parameters between the case of a gravity controlled-
and that of a vapour-shear controlled condensate
layer.

7. FLOW SEPARATION

The criterion for flow separation at the solid wall
given by (éu,/@y),= -5 = O leads to

B

)

n=0
Equation (89) has been examined in case of Data
No. 4 at different Reynolds numbers. When Re = 10?
flow separation in the condensate layer does not
occur. Examining the wvelocity distribution in the
vapour phase shows that the vapour changes its
direction of motion at ¢ ~ 2.4 (see Fig. 9). The region
of reversed flow motion lies entirely in the vapour
layer. At Re = 10° flow seperation in the condensate

Ger (=1 =0 (89)

| [Pressure | g prl R R Ph{AT®C)
| | (am) ° T ¢ - (=1°C) | (=20°C)
3 o} 2.77X10%/3.70 |145X10° |3 76 X107 & A
C K¢} 102X 10°1.74 |160X10°|1.40X10%| © 2xi107%] ®4xi0?
- 10.0 296x10°|1.00 |173x10°{575%107%| o =
| Condensate :Water
i Tube diam = 20mm =
X Al
o~ 10'
212k s o
-k g
- / f
| A
/ E
10° e —%LiiL bbbk b L [ S
10? 10t 10* 10° i0°
Re

FI1G. 7. Ratio [(Nug)gexof (Nttgdge=p ] fOr water at different pressures as a function of the Reynolds number.
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(Ga), =1.02X10° (Ph); =02 (Ga); =1.02X10° (Ph), =102
" (Re),=0 (Ry), =16 X10° | (Re), =10% (Ry), =1.6X10°
(Pr)=1.74 (R,), =1.4X1072 | (Pr), =174 (R,), =t4xi072
1ok
E
): Quiescent vapour Fiowing vapour
L

Ga, Pr Initial state (i)

Condensate: Water
Pressure =latm
Tube diam. > 20 mm

Initial state (i)
Condensate:Water
Pressure = | atm
Tube diam.= 20 mm

Up=0, AT=5°C Uyp=10ms™, AT=5°C
o.1 I I Py [ e L1 tadial L1l
0.l [ 10 0.1 l 10
Parameter Parameter
{Parameter); (Parameter),

F1G. 8. The functional dependence of the local Nusselt number Nu, on the governing parameters for water near
atmospheric conditions.

Ga = 1.02 X 10°

Pr = (74

Ph = 2X1073

Ry = 16XI0°

R, = 14Xx1072
—_— Stream line

in vapour layer

Stream line
in condensate layer

Liquid- Vapour
interface

e Tube wall

F1G. 9. Flow separation for water at 1atm and different
values of the Reynolds number.

layer does not occur in the vicinity of the solid wall.
Examining the motion of the liquid-vapour interface
shows that (Ju)/0y),-o =0 at ¢ =2.0 [(4),=o#0].
At ¢ ~2.5 the liquid-vapour interface velocity is
zero; the vapour in the vicinity of the interface
moves opposite to the liquid. At ¢ > 2.5, reversed
motion exists partly in the condensate—and partly
in the vapour layer. The condensate layer near the
solid surface still moves in the main flow direction.
At Re = 10° neither u, nor Ju,/dy vanishes at the
liquid-vapour interface. However, du;/dy = 0 at the
solid surface at ¢ ~22. The region of reversed
motion is contained entirely in the condensate layer.
HMT Vol. 22, No. 3-C

107" -
b 6o = 1.02x10°
F Pr=174
| Ph=2xi0”
Ry = 16X10°
i R, = L4XI0?

107

T T T TrIr

L
3

FiG. 10. Condensate layer thickness for water at 1atm and
different values of the Reynolds number.

A sketch of the stream lines in the three discussed
cases is shown in Fig. 9 and the local thickness of the
dimensionless condensate layer at different Reynolds
numbers is shown in Fig. 10.
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SOLUTION DES EQUATIONS DE LA COUCHE LIMITE DIPHASIQUE
POUR LA CONDENSATION LAMINAIRE EN FILM DE LA VAPEUR
EN ECOULEMENT PERPANDICULAIRE A UN CYLINDRE HORIZONTAL

Résumé-—On présente une méthode pour résoudre les équations de la couche limite diphasique pour la

condensation de vapeur sur un cylindre horizontal. Les trois équations aux dérivées partielles sont

transformées en équations differentielles dont le nombre dépend de la précision souhaitée. Les solutions

numériques donnent la distribution des valeurs locales du nombre de Nusselt sur la périphérie du
cylindre en fonction des différents paramétres actifs.

DIE LOSUNG DER ZWEIPHASEN-GRENZSCHICHTGLEICHUNGEN
FUR LAMINARE FILMKONDENSATION AN EINEM
VON DAMPF QUERUBERSTROMTEN
HORIZONTALEN ZYLINDER

Zusammenfassung — Es wird eine Methode zur Losung der Zweiphasen-Grenzschichtgleichungen fur die

Beschreibung der Kondensation stromenden Dampfes an einem horizontalen Zylinder vorgestellt. Dic

das Problem beschreibenden drei partiellen Differentialgleichungen werden in gewdhnliche Difterential-

gleichungen umgewandelt, deren Anzah! von den Genauigkeitsanforderungen an die Losung abhiingt.

Die numerischen Losungen geben die Verteilung der lokalen Werte der Nufleltzah! Giber dem Umfang des
Zylinders in Abhéngigkeit von den Einfluligrofien wieder.

PEUIEHUE YPABHEHUI BYX®A3HOIO MOTPAHUYHOIO CAOA I1PU
JAMUHAPHOM TUJIEHOUHOW KOHJAEHCALMU NMAPA, OBTEKAIOUIEIO
FOPU3OHTAJILHBIA HWJIUHAP MEPNEHAUKYJIAPHO ETO OCU

AunoTaums — [lpennaraeTtcs MeTOd pELUICHHs YPAaBHEHUH [BYX(PA3HOTO MNOFPAHHUYHOIO CIIOS [IpU

KOHIEHCAlMK Tapa Ha TOPU3OHTAILHOM WHIKMHApe. CHCTEMa Tpex OCHOBHBIX JiMddepeHinaIbHbIX

ypaBHEHHH B 4ACTHLIX POU3BOAHBLIX Mpeobpa3yercsi B CHCTEMY ODBIKHOBEHHBLIX AU(DHEPEHUNANBHBIX

yDaBHEHMIl, YHCAO KOTODPBIX 3aBHCHT OT TpeCyeMoil ToYHOCTH peulenus. B pezyibTate wucneHHoro

pellieHHs NONYYEHO PacTipe/ieienye NOKaIbHBIX 3HaYeHUH uncna HyccenbTa m0 OKpYKHOCTH UMITHHAPA
B 3aBUCHMOCTH OT OCHOBHBIX 11apaMeTpOB.



