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Abstract-A method is presented for solving the two phase boundary-layer equations for the 
condensation of a fiowiag vapour on a horizontal cylinder. The three governing partial differential 
equations are transformed into ordinary differential equations, the number of which depends on the 
accuracy required in the solution. The numerical solutions give the distribution of the local values of the 

Nusselt number on the periphery of the cylinder as a function of the d&rent governing parameters. 

NU~~N~~~~~~ 

tube radius ; 
function of Y(equatJoa 61); 
coeiTicient (equation 33); 
specific heat ; 
function of Y (equations 54, 56); 
function of Y(equations 42,46); 
function of Y (equation 64); 
function of Y (equation 50); 
function of Y (equation 32); 
acceleration of gravity; 
Galileo number [ = (Z~)3~~Y~~ ; 
ham-transfer co&Cent ; 
integer; 
constant fequdtion 78) 
integer; 
thermal conductivity I 
latent heat of condensation ; 
integer; 
integer; 
dimensionless number (equation 26); 
dimensionless number (equation 27); 
dimensionless number (equation 51); 
Nussett number ( = 2~~/~~); 
pressure ; 
function of Y(equation 79); 
phase change number [ = cl (T,,,- T,)/L] ; 
liquid Prandtl number ( = cyq’k,); 

wall heat flux 
( + ve in - ve y direction); 
rate of heat flow per unit tube length 
between x = 0 and x; 
integer; 
density ratio ( = p&,); 
kinematic viscosity ratio (=== I.@,); 
Reynolds number (=2aU,jv,f; 
distance along the tube circumferences 

temperature; 
temperature difference ( = T,,- T,); 
velocity in the direction of 
the x axis; 
dimensionless velocity ( = W/V); 
undisturbed vapour velocity ; 
velocity in the direction of the 
y axis; 
constant (equation 57); 
constant (equation 35); 
distance along the liquid-vapory 
interface; 
distance ~er~nd~c~ar to the 
liquid-~a~ur interface ; 
dimensionless distance per~~~~c~~ar 
to liquid-vapour interface ( = y/S), 

Greek symbols 

thermal diffusivity ( = ~/PC); 
coefficient (equation 83); 
condensate thickness; 
dimensionless condensate thickness 
( = 6ja); 
dimensionfess distance along 
~~q~id-~a~nr interface ( = ~]a); 
density ; 
kinematic viscosity; 
dynamic viscosity ; 
stream function; 
dimensionless stream function (= I/J/V); 
dimensionless temperature (equation 59); 
constant (equation 36). 

Subscripts 

t, for liquid ; 
17, for vapour; 
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0. at (i, = 0: 

111. mean value : 
\I‘, at the wa!l: 
sat. at saturation 

1. INTRODL’CTION 

Ir WAS Nusselt [I] who first. in 1916. analytically 

treated the laminar condensation of quiescent va- 
pours on flat \,ertical surfaces and horizontal 
cylinders. From that time. being of direct technical 
importance, the problem of vapour condensation on 
horizontal cylinders has received a lot of attention; 
and many workers modified the simple theory 
(Sparrow and Gregg [2], Chen [3], etc.). An 
important factor related to that problem and greatly 
influencing the mechanism of heat transfer is the 
velocity of the oncoming vapour. The vapour 
experiences shear forces on the liquid film ; moreover 

a pressure gradient is generated in that film. This 
causes thinning of the condensate film on the 
forward half of the cylindrical surface and hence 
reduces its thermal resistance. Shekriladze and 
Gomelauri [3] analysed this problem. In their analy- 
sis. they ignored in the condensate layer pressure, 
inertia and gravity forces. energy convection and 
condensate subcooling. By equating shear stress at 
liquid-vapour interface to change in momentum flux 
of the condensing vapour, they managed to eliminate 
the equation of motion in the vapour phase. Denny 
and Mills [5] made similar approximations, and they 
included gravity forces in liquid layer and con- 

densate subcooling in their energy balance. Fujii 6’1 trl. 
[6] considered the equation of motion in the vapour 
boundary layer. However, they approximated the 
velocity profile in that layer by a quadratic formula, 
and still ignored in the condensate film inertia and 
pressure forces, energy convection and liquid sub- 
cooling. Schmal [7] treated the same set of equations 
in [6] but he eliminated gravity forces, and still 
ignored liquid convection and subcooling. 

Such approximations may be justified in many 
cases, but they cannot bc generalized over the whole 
range of the governing parameters. Thus, a need 
arises for a method for solving the full two phase 
boundary-layer equations. The work presented in 
this paper is devoted towards this aim. Solutions, 
based on this method. for numerical values covering 
a wide range of the governing parameters are 
presented and discussed. 

2. FOR511 LATION OF THE PROBLEM 

The physical model is shown in orthogonal 
curvilinear coordinates in Fig. l(a). A condensate 
film flows around a horizontal cylindrical surface. 
The condensate film is surrounded by a vapour 
boundary layer. Outside the vapour layer, the flow 
is ideal. The undisturbed vapour velocity and the 
force of gravity have the same direction. The z-axis is 
along the liquid-vapour interface. and the point of 

(a) L!quid -Solid !nterface 
7 

Llquld -Vopour mterface 

FIG. 1. (a) Model in orthogonal curvilinear co-ordinates; 
(b) Equivalent model in cartesian co-ordinates. 

origin is the upper intersection between the 
liquid-vapour interface and the axis of symmetry. 
The equivalent model in Cartesian coordinates is 
shown in Fig. l(b). 

2.2. Assurilpriorls 
The following assumptions have been made: 

(1) Physical properties are constant. 
(2) Surface tension forces are insignificant. 

(3) Thicknesses of liquid and vapour layers are 
small compared with tube radius. 

(4) Vapour velocity components along and per- 
pendicular to the liquid-vapour interface have 
insignificant effects on velocity and pressure distri- 
butions in the ideal flow region, 

(5) Fluid motion in liquid and vapour layers is 
laminar up to the separation point. 

(6) Undisturbed vapour velocity is steady and 
uniform and has a low Mach number. 

(7) Vapour is initially pure, dry and saturated. 
(8) Temperature variations at liquid-vapour in- 

terface between liquid and vapour phases are 
insignificant. 

(9) Change in momentum flux at liquiddvapour 
interface perpendicular to that interface due to 
change in fluid velocity by condensation has neglig- 
ible effect on pressure distribution in the liquid film. 
(10) Steady state is achieved. 
(11) Viscous dissipation is ignored. 
(12) Wall surface temperature is uniform. 

2.3. Boundur~4apv rquutions 

In liquid Itr~~-r. Conservation of mass, momentum 
and energy in liquid boundary layer is expressed 
respectively by 
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(2) 

(3) 

In vapour layer. Similarly in the vapour boundary 
layer 

au,+a”u - () 

ax ay 

au, 1 1 dp a2u. 
u,- $ u,+ = - -- + \v ,L 

Fx CL’ PO dx L 84’2 

?;% = l&t = constant. 

2.4. Boundary and interfacial conditions 
At liquid-solid interface (y = -6). 

u, = 0 

VI = 0 

7; = T, 

At liquid-vapour interface (y = 0). 

u, = u, 

Pl v1 = P, v, 

(4) 

(5) 

(‘5) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

At vapour boundary-layer edge. At the edge of the 
vapour boundary layer, the velocity component in 
the x direction approaches the velocity in the main 
stream asymptotically. The main stream velocity is 
obtained from the ideal flow theory. This may be 
expressed as: at ~1 = x) 

(14) 

2.5. Energy balance 
From an energy balance in the condensate layer 

q,ds = gdx. 

Within the accuracy of the boundary layer assum- 
ptions, the approximation dszdx may be made. 
Equation (15) yields 

/aXI d 

to the velocity components by 

(17) 

(18) 

The pressure gradient in the liquid layer is obtained 
from the theory of ideal flow, or 

dp 2P”Csin 2 
dx= a 0 

(19) 
a 

Substituting in equation (2) gives 

64 a244 w, a% --__ 
ay axay ax a$ 

= gry)sin(:) 

2p,Uz, 2x 
+------ sin - 

up1 0 a 

+v?!L!. 
1 ay3 

Equation (20) may be transformed into a dimension- 
less form by introducing the following dimensionless 

quantities: 

(dimensionless stream function) 

+; 

(dimensionless distance in x direction) 

Y=$ 

(dimensionless distance in y direction). 

Now 

and 

ami, ~1, am*: 
--= ____ 
ay amAm BY” 

I 

(21) 

where 

A=” (24) 
a 

(dimensionless condensate thickness). 

Substituting in equation (20) gives 

3. MATHEMATICAL ANALYSIS 

3.1. In liquid layer 
The continuity equation in the liquid layer is 

satisfied by introducing a stream function tir related 

_,wa2*: 
__ = N,,A3 sin (4) a4 a~” 

a%+ 

(25) 
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where 

and 

N = !P3(Pr-_p”~ Ga R,-1 
z9 =- - 

$Pt i > 8 l-6 

N _ 2a2p,U2, Re2 
UP-----=- v: Pf 2R; R, 

2uU Re =A (Reynolds number) 
“, 

Ga = !!?& (Galileo number) 
“; 

R, = ” (density ratio) 
VC 

R, :: “‘r 
“V 

(kinematic viscosity ratio). 

(261 

(271 

(28) 

(291 

(301 

(31) 

Let the dimensionless stream function 3: be ex- 
pressed by an infinite odd series in (p (Blasius series) 
[g], or 

I/$ = f F2n_F, cP~~+‘. (32) 
IS=0 

The coefTicient Fzn+ 1 is a function of Y only. 
Now 

Primes denote differentiation with respect to I: and 
pmr 2n+ 1 is the mth derivative of Fz,+ r. 

Let the dimensionless condensate layer thickness A 
be represented by an infinite even series in 4 
(symmetrical about the y axis), or 

A = c hz,@“. (33) 
n=o 

substituting in equation (25) and replacing sin (4) 
and sin (24) by infinite power series in # give an 
equation which contains terms each of them is a 
multiplication of a number of infinite series. Carrying 
out the multiplication and rearranging give 

+(2n-2j-1-2i)F;,.,,F;ji,_,i 

I 

>I +W2n+l p+l =o. (34) 

w 2nil is a constant defined by 

W zn+l = Nie&2n+1 (1?+~,,fbn,,(2) 

and 

(35) 

(36) 

Equation (34) is satisfied at all values of 4, hence the 
coeaficient of @-n+ ’ must be zero for all values of n. 
Thus, 

+(2n-2j-1-2i)F~i+,F~i+,_,i 
111 

$.W&+t = 0. (37) 

Equation (37) represents an infinite set of ordinary 
differential equations. The individual equations are 
obtained by substituting n = 0, 1: 2,3 . . . etc. Sub- 
stituting and rearranging give 

for n = 0: 

F’,” + {bOIF, F‘; - (F;)2]j + W, = 0 (38) 

El (I) = b; i39) 

E, (2) = 2b; (40) 
fern= 1: 

F;“f (ho[F,F;‘-4F;F; 

+3F;“F,]+D,j+W, = 0 (41) 

D, = b, [F, F’; + (F;)2] (42) 

&j(l) = ~~~3~~-~~~) (43) 

~(2) = 62,(6&-4bo) (44) 

for n>2: 

Ft;;,, -f-{bo[PIF;‘,,,-(2n+2)F;F;,+, 

-t-(2n+1)F;‘F,,+,l+~,,+,) 

+ W2m+* = 0 (45) 

where 

b2n-Zj i ((2i+l)Fzi+jF’;j.,,-zi 
i=O 

r-l 
J 

+'Ci x ((2i+1)F2i+lF;lfz+1-Zi 

i=l 

-(2i$l)F;i+,F;“.,,_,i). (46) 

If the inertia term is ignored in the equation of 
motion, the term between brackets in equa- 
tion (37) disappears; the set of equations becomes 
then 

F”’ 2n+1+WZn+i =0 (n>Of. (471 
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3.2. In vapour layer 
The momentum equation in the vapour layer may 

be treated in a similar manner using the following 

substitutions: 

2a2 U2 
N,, = + 

V” 

The corresponding ordinary 

are : 

for n = 0: 

Re2 

2 
(51) 

differential equations 

A” + ibocflf;’ - K 1'1) + Wl = 0 (52) 

fern= 1 

K+{~oVlf;‘-4~“G 

+3f;‘f3] +&) +w, = 0 (53) 

d, = b, bf;’ + cf; )“I (54) 

forn>2: 

f ;c+1 +~W1fi:,+1 

-(2n+2)f;f;n+I +(2~+lKfz,+,l 
+d 2”+1) t-Wzn+1 = 0 (55) 

d 2n+l 

X i ((2i+l),f2i+,fil;+1-2i 
i=O 

+(2n-2j-l_2i)f;i+lf;j+1_2i) 
1 II-1 

+bO 1 ((2i+l).hi+I.G’n+l-2i i=l 
-(2i+l)fii+lfin+l-zi) 

(56) 

f Zn+ r is a function of Y only and wZn+ t is a constant 
defined by 

W 2n+l = Nvp~2n+l (2) for n>O. (57) 

3.3. Energy equation in liquid layer 
Substituting in equation (3) gives 

a$,a7y a$,al; a27 
ay ax ax ay '1 ay2 (58) 

Let 

7; - T,,, 0r=-------. 
T, - T,,, 

(59) 

Substituting in equation (58) and rearranging give 

A ati:ae, AalG/:as,_ 1 3% 

ay a4 a& ar Pr ay2 (60) 

Let 

e, = f AZnd2”. (61) 
n=o 

A,, is a function of Y only. Differentiating, substitut- 
ing and rearranging yield the following set of 
ordinary differential equations: 

for n = 0: 

Ag+Pr(b,F,Ab)=O (62) 

forn>l: 

A;‘, + Pr[b,(F, A;,-2nF; A,,)+E,,] = 0 (63) 

where 

Ez, = i A;“-zj 
j=l 1 

X i [(2j+1_2i)b,iFzj+r_2i] 
i=O 

-(2n-2j)A2,_2j 

j 
X C (bziF;j+,-2i) . 

1 
(64) i=O 

If energy transport by convection is ignored, the 

terms between brackets disappear. The 

F;“,, (-I)=0 

(-1) = 

A,,(-1) = for (n 0) 

and 

(67) 

(68) 

1) = for (n 0). 

At interface (Y 0) 

f;. 1 (‘4 = R, F;, + I 6’) 

f2n + I (01 = R, F2,+ I (0) 

./%+I (0) = R,R,Z FL+, (0) 

Azn(0) = 0. 

AtY=m 

(69) 

(70) 

(71) 

(72) 

(73) 

From equation (14) 

= ReAsin4 (74) 

Substituting for A from equation (33), replacing sin 
4 by an infinite series in $J and carrying out the 
multiplication give 

(75) 

3.5. Energy balance 
Re-arranging equation (16) in a dimensionless 



376 E. S. GADDIS 

form and carrying out the involved series muitipli- 

cation yield the following equation: 

where 

Ph = cliT,;eTw) (phase change number) (77) 

and 

(79) 
j=O 

P 2ni 1 a function of Yand IZn+ , is a constant. 

for n = 0: 

5. NOTE ON THE PROCEDGRE 

OF COMPUTATION 

A set of 3 ordinary differential equations with the 
corresponding boundary and interfacial conditions 
and an algebraic equation (emerging from the energy 

balance) exists for each value of II. Since e;roh set is 
independent of the other sets for higher values of n, 

the solution was carried out step by step starting 
with 11 = 0. The two equations of motion for each II 
were solved si~iuit~~neoLlsly independent of the 

energy ~quatior~. This can be done provided that the 
coefficient hl, is known. Since hz, is the outcome of 

the solution. its vaiue was init~~~lly assumed and 
checked at a later stage. A numerical solution based 

on the assumed value of h,, yielded the functions 
Fin ,. 1, +j”,l_, , and their higher derivatives at different 

mesh points. These values were fed in the energy 
equation and a solution of the latter was obtained. 

The energy balance equation provided the check for 
the assumed value of hz,. and if it was necessary 

another guess was made and the procedure was 
repeated. 

The local Nusselt number and the condensate 
layer thickness at the forward st~lgn~~t~o~~ point are 
yielded from the first set of equ~ltions corrcspo~~di~g 

to II = 0. Three sets are enough for an accurate 

A’,,(-I)+ i (Jj+l)b,,_,j 
b,, = -- j=l 

D” (81) 

4. HEAT-TRANSFER RELATIONSHIP!3 

Substituting and re-arranging give 

where 

Ab(- 1) 
;!O 

ho 

-t 
/2n = " A;"f-l)- i b2jy2p*-2j" 

Cl I ]=I I 

for n>O. 

Ph 

(X2) 

(83) 

(84) 

(85) 

Equation j83) gives the local value of the Nusselt 
number. The validity of this equation is up to the 
point where flow separation takes place. 

If flow separation does not occur, equation (83) 

may be integrated to give the mean Nusselt number 
Nu,. This yields 

evaluation of the local Nusselt number up to $ 
= 1 .O, and eight sets were considered up to 4 = 1.8. 

Solutions for evaiuati~g the mean Nusselt number 
and for predicting the position of flow separation (d, 

>?.O) were carried out with eight and twelve sets 
respectively. 

Since the solution corresponding to each II is an 
input to the equations of higher II. a high degree of 
accuracy is essential. This was checked by varying 
the number of intervals in liquid and vapour layers. 
Limited space does not allow more elaboration. 

The case of a qL~iescent vapour is trented as a 
special case of the general solution by substituting 
Re = 0. Numerical results are presented for steam 
condensing at pressures 0.1, 1 and 1Oatm on a tube 
of about 20mm dia with temperature difference (T,,, 
-TX,) of about 1, 5 and 20 C. The values of the 
governing dimensionless parameters are given in 
Table 1 (Data No. l--Y), The other computed values 
in Table 1 are for the condensation of a vapour 
metal (Date No. IO- 12) and of vapours of viscous 
liquids (Data No. 13- 15). The computed values of 
the lOCiI Nusselt number krhl’u, and the local 
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Table 1. Comparison between Nusselt theory and present work with Re = 0 

377 

Fluid R, R, GU Pr Ph & Nu: Nui Nu: ,Vu~ Data 
No. 

__-...- -. 

2 x 1o-3 2.62 x 10-S 765 765 618 613 1 
Water 1.45 x 10’ 3.76 x IO-” 2.77 x 10’ 3.7 10-l 3.91 x 10-s 512 511 414 410 2 

(p = 0.1 atm) 4 x 10-l 5.53 x 10-J 363 362 294 290 3 
--..- - 

2x lo-’ 2.28x 10-3 877 877 709 704 4 
Water 1.600 In’ 1.40x 10-Z i.ozx 10” 1.74 lo-2 3.41 x 10-S 586 586 475 471 5 

@= Intm) 4x 10-2 4.84 x 10-3 415 415 337 333 6 
___- 

2 x 1o-3 2.01 x 10-s 995 997 805 800 7 
Water 1.73 x IO’ 5.75x 10-Z 2.96x IOU 1.0 10-* 3.01 x 10-3 665 666 538 535 8 

@ = IOatm) 4 x 1om2 4.28 x lO-3 469 471 381 378 9 
~- 

Liquid 2 x 1o-3 1.08 x lo-” 185 202 154 162 IO 
metal 3.4 x IO” 3.2 x IO-’ 10’ 5 x lOA 1O-2 1.95 x 10-J 103 135 87.4 108 11 

(Pre 1) 4x 10-2 3.57 x to-* 56.4 95.5 48.2 76.7 12 
-. 

Viscous 10 1 1.25 x 1O-2 173 161 141 129 13 
liquids 10 0.1 10” 10” I 6.85 x lo-” 315 286 255 229 14 
iP?% 1) 10” 1 3.83 x 1o-3 564 508 456 408 15 

+ Based on present work with Rr = 0 
$I Based on Nusselt rheory. 

dimensionless layer thickness A, at the forward 
stagnation point and the mean Nusseit number NM, 
are given in Table 1. Comparison is made between 
the values based on the present work (Nu,)t and 
(Nu,)i and the corresponding values based on the 

Nusselt theory (Nu, )$ and (Nu,)~. The tabulated 
values in Table 1 based on the Nusselt theory are 

evaluated from the expressions 

and 

(88) 

Agreement exists between the Nusseit theory and the 
present work with water at the given pressures and 

the given values of the phase change number Ph. 
However, the Nusselt theory overestimates the local 
and mean values of the Nusselt number in the liquid 
metal case and underestimates them in the case of a 
viscous liquid when PII = 1 .O. The values of /VU, and 
Nu,,, based on the Nusselt theory are respectively 
69”d and 599, higher with Data No. 12 and Y’<> and 

$07; lower with Data No. 14 compared with the 
corresponding values based on the present work. 
Data No. 12 for a liquid metal and Data No. 14 for a 
viscous condensate are analysed further in Table 2. 
The assumptions in the Nusselt theory are examined 
separately and together. It is seen in Table 2, that for 
the liquid metal case the elimination of the con- 
vection term, as expected. has no effect on the 
Nusselt number. Since in this case Ph 6 1.0, ignoring 
subcooling in the condensate is also ineffective. 
However, ignoring inertial forces in the condensate 
layer leads to an increase in the locat Nusselt 
number Nu, and the mean Nusselt number Ntg, by 

Table 2. Effects of ignoring inertia forces, energy convection, 
condensatesubcoolingandshearforcesat interfaceonNusselt 

number (Re = 0) 

Liquid metal Viscous liquid 
Data No. 12 Data No. 14 

NUT Nu, NM, Nu, 
Present work 56.4 48.2 315 255 
A 73.3 59.4 316 256 
l3 56.2 48.1 299 243 
c 55.9 47.8 298 242 
D 67.3 59.7 317 257 
/t+B+C+B 95.5 77.3 278 325 
Nusselt theory 95.5 76.7 286 229 

- 

Ignored in condensate layer: A, inertia forces; B, energy 
convection; C, condensate subcooling in energy balance; D, 
shear forces at liquid-vapour interface. 

30% and 23% respectively. Meanwhile, ignoring the 
shear forces at the liquid-vapour interface increases 
NM, and Nu, by 19”:; and 347; respectively. The 
velocity distribution at d - 1 for that particular case 
is shown in Fig. 2. It is seen in that figure that the 

maximum value of the liquid velocity uF( = ~~ff/v*) 
for the full solution is attained at Y = - 0.59 (nearer to 

the wall rather than to the liquid-vapour interface). 
The liquid-vapour interface velocity amounts only 
to 25% of the maximum value. The velocity 
distributions based on ignoring the inertia term in 

the condensate [u:],~, the shear forces at the 
liquid-vapour interface [u:], and when meeting all 
the assumptions in the Nusselt theory [z.$]~. .,D are 
also shown in Fig. 2. 

Ignoring the inertial forces in the condensate layer 
and the shear forces at the interface with Data No. 
14 (Pr = loo, Ph = If have insigni~cant effect on the 
vaIue of the Nusselt number. However, eIiminatjng 
convection in the energy equation or ignoring liquid 
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Table 3. Effect of Reynolds number on Nusselt number and boundary layer 
thickness (water) 

Pressure Re A0 Nu, Nu, i&t>1 
No. 

1.4 x 102 2.46 x 10-j 812 
1.4 x 103 1.34 x 10-3 1491 1 
1.4x lo4 4.35 x 10-4 4597 

1.4 x 102 3.61 x iO-3 555 434 
0.1 atm 1.4x fOS 1.94 x 10-3 1032 2 

1.4x 10” 6.29 x 10-4 3182 

1.4 x ioz 4.85 x 10-3 414 322 
1.4 x 103 2.33 x 10-3 863 5441 3 
1.4 x lo* 7.47 x lo-4 2688 

IO3 1.94 x 1o-3 1035 
104 7.83 x 1O--J 2353 4 
lo5 2.49 x 1O-4 8037 

103 2.90 x 1O-3 691 
1 arm 104 1.21 x 10-3 1652 5 

lo5 3.85 x 1o-4 5194 

103 3.92 x 1O-3 512 383 
104 1.59x 10-j 1264 6 
IO5 X05 x HY 3977 

7x 10” 1.32 x 10-3 1520 
7x IO4 4.45 x 1o-4 4493 7 
7x105 1.41 x 1o-J 14196 

lx 103 2.08 x lo- 3 961 
10atm 7x 104 7.21 x lo-” 2178 8 

7 x lo5 2.28 x 10-1 x774 

7x 10’ 2.96 x lo--’ 678 
7x lo4 1.03 x 10-j 1942 9 
7x io5 3.27 x lo-’ 6135 

t Separation starts near backward stagnation point. 

Table 4. Effect of ReynoIds number on Nusselt number 
and boundary-layer thickness (liquid metal) 

Re 

103 
lo4 
lo5 

10” 
IO4 
lo” 

10” 
IO4 
lo1 

A0 

8.19 x 1o-3 
3.15 x 10-x 
1.00 x 1o-3 

1.34 x 1o-2 
4.85 x 1o-3 
1.54 x 1o-3 

2.39 x 1o-2 
8.90 x 1o-3 
2.82 x 1o-3 

Nu, Nu, 

244 192 
634 466 

1999 1465 

150 122 
413 329 

1303 to38 

84.2 70.5 
225 190 
711 598 

Data No. 

10 

11 

12 

6.2. Flowing mqmur (Re # 0) 
Computations were made at different values of the 

Reynolds number and the values given in Table 1 for 
the parameters Ga, Pr, Ph, R, and R,!. The same data 
numbers are still used to refer to the values of the 
five parameters Ga.. Rv when calculations were 
made with Re # 0. The computed local values of the 
Nusselt number Nu, and condensate thickness A,, 
are given in Tables 3-5. The values of the mean 

Table 5. Effect of Reynolds number on Nusselt number 
and boundary-layer thickness (viscous liquids) 

Re ALI Null 

103 7.18 x 1O-3 298 
104 2.36 x 1O-3 906 
IO5 7.46 x 10-4 2865 

103 3.41 x 10-3 628 
104 1.10x 10-3 1943 
105 3.48 x 1om4 6144 

103 1.59 x 10-3 I342 
104 5.08 x 10-4 4200 
105 1.61 x 1o-4 13279 

Data No. 

13 

-______ 

14 

-.____ 

I.5 

Nusselt number, as long as flow separation does not 
occur, are also present in the tables. The variation of 
the local Nusselt number with C$ at the different 
values of l?e is shown in Figs. 4-6 for the cases of 
water at 1 atm, a liquid metal and a viscous liquid 
respectively. The general trend in the figures is that 
the local Nusselt number distribution is flatter at the 
lower values of the Reynolds number and attains 
fairly similar profiles with increasing Reynolds 
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FIG. 6. Local Nusselt number distribution for a viscous 
condensate. 

number. In Fig. 7, the ratio [(Nu)~,,,/(Nu),,=,] is 
plotted against the Reynolds number for condensing 
steam at 1 atm. Three distinct regions are clear in 
Fig. 7. At low Reynolds number, the condensate 
layer is gravity controlled. At sufficiently high 
Reynolds number, the condensate layer is vapour- 
shear controlied. The dependence of the Iocal 
Nusselt number Nu, at the forward stagnation point 
fulfils in that region the folIowing relationship 

in the intermediate region, where both gravity forces 
and vapour-shear forces are influential, a relation 
similar to that in the vapour-shear controlled region 
does not exist. 

Because the profile of the local Nusselt number 
distribution at the forward half of the cylindrical 
surface is nearly identical at high Reynolds numbers, 
and since most of the condensation takes place at 
that half, the ratio [XU,,.‘N~,] may be fairly 
constant in the vapour-shear controlled region. The 
value of the mean Nusselt number in that region 
may still be expressed by the relation 

.NcI,,x Rtf’,‘. 

Similar conclusion has been reached in 14, 6. 71, 
It is clear from Fig. 7, that the tl~reshold value of 

the Reynolds number at which vapour-shear forces 
become influential increases with increasing steam 
pressure. 

Data No. 5 are further examined for a quiescent 
and a flowing vapour (Rr = O.l@). While keeping 
the other parameters unchanged at their value in the 
initial state (i), one of them has been varied and the 
ratio [Nu,/(NI.~,)~] is plotted in Fig. 8 against the 
ratio of that parameter to its initial value 
[parameter/(parameter)i]. Comparing the two cases 
in Fig. 8 shows the difference in the functional 
dependence of the Nusselt number on the governing 
parameters between the case of a gravity controlled- 
and that of a vapour-shear controlled condensate 
layer. 

7. FLOU’ SEPARAIIOK 

The criterion for flow separation at the solid wall 
given by (i’uJc;?~),, -A = 0 leads to 

Equation (89) has been examined in case of Data 
No. 4 at different Reynolds numbers. When Re = 10’ 
Row separation in the condensate layer does not 
occur. Examining the velocity distribution in the 
vapour phase shows that the vapour changes its 
direction of motion at b, z 2.4 (see Fig. 9). The region 
of reversed flow motion lies entirely in the vapour 
layer. At Rc = 103 flow seperation in the condensate 

L Condensate :Water I 

FIG. 7. Ratio [(N”o)R,~oi(Nuoh,ol f or water at different pressures as a function of the Reynolds number. 
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Initial state ( i 1 
Condensate Water 
Pressure = I atm 

Tubediom’2Omm Tube diom.‘ZO mm 

IO 0 I I IO 

Parameter Parameter 

(Parameter), (Parameter), 

FIG. 8. The functional dependence of the local Nusselt number Nu, on the governing parameters for water near 
atmospheric conditions. 

Ga = I 02 X IO’ 

Pr = 174 

Ph = 2XlO-3 

I?, = 16X103 

R, = 14x 10-z 

/ -- Stream I ine 
in vapour layer 

Stream line 

\ 

in condensate layer 

Liquid-Vapour 
interface 

Tube wall 

FIG. 9. Flow separation for water at I atm and different 
values of the Reynolds number. 

layer does not occur in the vicinity of the solid wall. 
Examining the motion of the liquid-vapour interface 
shows that (&.+/8~),,, = 0 at 4 -2.0 [(u~)~=~#O]. 
At 4 ~2.5 the liquid-vapour interface velocity is 
zero; the vapour in the vicinity of the interface 
moves opposite to the liquid. At $> 2.5, reversed 
motion exists partly in the condensate-and partly 
in the vapour layer. The condensate layer near the 
solid surface still moves in the main flow direction. 
At Re = 10’ neither U, nor &,/?J, vanishes at the 
liquid-vapour interface. However, ?ui/?y = 0 at the 
solid surface at #I ~2.2. The region of reversed 
mot@ is contained entirely in the condensate layer. 

HMT Vol ??, No 3 -C 

Go = l.02X109 

- Pr=174 

10-Z - 

A 

I I / I 1 

0 I 2 3 

+ 

FIG. 10. Condensate layer thickness for water at 1 atm and 
different values of the Reynolds number. 

A sketch of the stream lines in the three discussed 
cases is shown in Fig. 9 and the local thickness of the 
dimensionless condensate layer at different Reynolds 
numbers is shown in Fig. 10. 
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SOLUTION DES EQUATIONS DE LA COUCHE LIMITE DIPHASIQUE 
POUR LA CONDENSATION LAMINAIRE EN FILM DE LA VAPEUR 

EN ECOULEMENT PERPANDICULAIRE A UN CYLINDRE HORIZONTAL 

Rksumk--On prtsente une methode pour rtsoudre les equations de la couche limite diphasique pour la 
condensation de vapeur sur un cylindre horizontal. Les trois equations aux derivtes partielles sont 
transformees en equations differentielles dont le nombre depend de la precision souhaitee. Les solutions 
numeriques donnent la distribution des valeurs locales du nombre de Nusselt sur la peripherie du 

cylindre en fonction des differents parametres actifs. 

DIE LOSUNG DER ZWEIPHASEN-GRENZSCHICHTGLEICHUNGEN 
FUR LAMINARE FILMKONDENSATION AN EINEM 

VON DAMPF QUERiiBERSTRiiMTEN 
HORIZONTALEN ZYLINDER 

Zusammenfassung-Es wird eine Methode zur Losung der Zweiphasen-Grenzschichtgleichungen fur die 
Beschreibung der Kondensation stromenden Dampfes an einem horizontalen Zylinder v orgestellt. Die 
das Problem beschreibenden drei partiellen Differentialgleichungetl werden in gewohnlichc I>ifl&nti,il- 
gleichungen umgewandelt, deren Anzahl von den Genauigkeitsanforderungen an die L&ung abhinyt. 
Die numerischen Losungen geben die Verteilung der lokalen Werte der Nubeltzahl iiber den1 Urnfang dcs 

Zylinders in Abhangigkeit von den EinfluDgrGMen wiedcr. 

PEIIIEHHE YPABHEHMfi ABYX@A3HOIO IIOFPAHMYHOI’O CJIOR IIPM 
JIAMMHAPHOR HJIEHO’IHOGi KOH~EHCAHMM HAPA, 06TEKAIOIIIEI-0 

FOPH30HTAJIbHbII? HMJIMHflP IIEPIIEHAMKYJDIPHO ET0 OCM 

AmoTasnn - np&ItaraeTCa tieTOn ~meHllK ypaBHeHHfi AByX+a3HOrO rrOr,3dHH~HOrO CJlOH np# 
KOHAeHCaURR napa Ha rOpH30HTaJtbHOM UH.“lrHA~. CHCTeMa TpeX OCHOBHblX !IW$~e~HUHa~3bHblX 
ypaBHeHHfi B qacTHb,X “pOH3BOAHbtX npeo6pa3yeTcn B CWTeMy 06bIKHOBeHHblX &K&~HUHaJtbHbtX 
ypaBHeH& WC,tO KOTO,,b,X 3aBHCHT OT TPe6yeMOti TOSHOCTH peU,eHUa. B pe?y,lbTdTe ‘IHC,leHUOrO 
pW,eHlia tIOJtyYeH0 paCrtpeAeneHHe JtOKaJtbHblX 3Ha’leHl(ti 9HCJta HycCenbTd tt0 OKpyW(HOCTH UrtJtHH,l,Jd 

B JaBACAMOCTH OT OCHOBHblX ITapaMeTpOB. 


